Search results
Results From The WOW.Com Content Network
Electroreceptive animals use the sense to locate objects around them. This is important in ecological niches where the animal cannot depend on vision: for example in caves, in murky water, and at night. Electrolocation can be passive, sensing electric fields such as those generated by the muscle movements of buried prey, or active, the ...
The term echolocation was coined by 1944 by the American zoologist Donald Griffin, who, with Robert Galambos, first demonstrated the phenomenon in bats. [1] [2] As Griffin described in his book, [3] the 18th century Italian scientist Lazzaro Spallanzani had, by means of a series of elaborate experiments, concluded that when bats fly at night, they rely on some sense besides vision, but he did ...
The melon is structurally part of the nasal apparatus and comprises most of the mass tissue between the blowhole and the tip of the snout. The function of the melon is not completely understood, but scientists believe it is a bioacoustic component, providing a means of focusing sounds used in echolocation and creating a similarity between characteristics of its tissue and the surrounding water ...
Examples include echolocation of bats and dolphins and insect antennae. Using self-generated energy allows more control over signal intensity, direction, timing and spectral characteristics. By contrast, passive sensory systems involve activation by ambient energy (that is, energy that is preexisting in the environment, rather than generated by ...
It takes place in cryptochrome molecules in cells in the birds' retinas. [4] According to the first model, magnetoreception is possible via the radical pair mechanism, [5] which is well-established in spin chemistry. The mechanism requires two molecules, each with unpaired electrons, at a suitable distance from each other.
Several explanations for why cetaceans strand themselves have been proposed, including changes in water temperatures, [3] peculiarities of whales' echolocation in certain surroundings, [4] and geomagnetic disturbances, [5] but none have so far been universally accepted as a definitive reason for the behavior.
This category has the following 2 subcategories, out of 2 total. ... (5 C, 6 P) Pages in category "Animals that use echolocation" The following 24 pages are in this ...
The lateral line, also called the lateral line organ (LLO), is a system of sensory organs found in fish, used to detect movement, vibration, and pressure gradients in the surrounding water. The sensory ability is achieved via modified epithelial cells , known as hair cells , which respond to displacement caused by motion and transduce these ...