Ads
related to: another word for edges in geometry definition dictionary examples worksheet
Search results
Results From The WOW.Com Content Network
In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. [1] In a polygon, an edge is a line segment on the boundary, [2] and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces (or polyhedron sides ...
In geometry, a polygon (/ ˈ p ɒ l ɪ ɡ ɒ n /) is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its edges or sides. The points where two edges meet are the polygon's vertices or corners. An n-gon is a polygon with n sides; for example, a triangle is a 3 ...
For example, , (,) is a projection and its restriction to a graph of a function, say, is also a projection. The terms “idempotent operator” and “forgetful map” are also synonyms for a projection.
The edges of a circular triangle may be either convex (bending outward) or concave (bending inward). [ c ] The intersection of three disks forms a circular triangle whose sides are all convex. An example of a circular triangle with three convex edges is a Reuleaux triangle , which can be made by intersecting three circles of equal size.
In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]
In an axiomatic treatment of geometry, the notion of betweenness is either assumed to satisfy a certain number of axioms, or defined in terms of an isometry of a line (used as a coordinate system). Segments play an important role in other theories. For example, in a convex set, the segment that joins any two points of the set is contained in ...
The definition above generalizes from a directed graph to a directed hypergraph by defining the head or tail of each edge as a set of vertices (or ) rather than as a single vertex. A graph is then the special case where each of these sets contains only one element.
Also called infinitesimal calculus A foundation of calculus, first developed in the 17th century, that makes use of infinitesimal numbers. Calculus of moving surfaces an extension of the theory of tensor calculus to include deforming manifolds. Calculus of variations the field dedicated to maximizing or minimizing functionals. It used to be called functional calculus. Catastrophe theory a ...