Search results
Results From The WOW.Com Content Network
In chemistry, chemical stability is the thermodynamic stability of a chemical system, in particular a chemical compound or a polymer. [1] Colloquially, it may instead refer to kinetic persistence, the shelf-life of a metastable substance or system; that is, the timescale over which it begins to degrade.
Crystal structure of β-glucosidase from Thermotoga neapolitana (PDB: 5IDI).Thermostable protein, active at 80°C and with unfolding temperature of 101°C. [1]In materials science and molecular biology, thermostability is the ability of a substance to resist irreversible change in its chemical or physical structure, often by resisting decomposition or polymerization, at a high relative ...
Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy. The nonequilibrium thermodynamic state of living ...
Non-equilibrium thermodynamics is a branch of physics that studies the dynamics of statistical ensembles of molecules via unstable states. Being "stuck" in a thermodynamic trough without being at the lowest energy state is known as having kinetic stability or being kinetically persistent.
Steady-states can be stable or unstable. A steady-state is unstable if a small perturbation in one or more of the concentrations results in the system diverging from its state. In contrast, if a steady-state is stable, any perturbation will relax back to the original steady state. Further details can be found on the page Stability theory.
The kinetic and thermodynamic deprotonation of 2-methylcyclohexanone. If a much weaker base is used, the deprotonation will be incomplete, and there will be an equilibrium between reactants and products. Thermodynamic control is obtained, however the reaction remains incomplete unless the product enolate is trapped, as in the example below.
where is the dissociation energy at absolute zero, k B is the Boltzmann constant, h is the Planck constant, T is thermodynamic temperature, is vibrational frequency of the bond. This expression is very important since it is the first time that the factor k B T / h , which is a critical component of TST, has appeared in a rate equation.
Chemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measurements of various thermodynamic properties, but also the application of mathematical methods to the ...