Search results
Results From The WOW.Com Content Network
Varignon's theorem is a theorem of French mathematician Pierre Varignon (1654–1722), published in 1687 in his book Projet d'une nouvelle mécanique.The theorem states that the torque of a resultant of two concurrent forces about any point is equal to the algebraic sum of the torques of its components about the same point.
In physics, Lami's theorem is an equation relating the magnitudes of three coplanar, concurrent and non-collinear vectors, which keeps an object in static equilibrium, with the angles directly opposite to the corresponding vectors.
In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. However, a set of four or more distinct points will, in general, not lie in a single plane.
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...
A shearing force is applied to the top of the rectangle while the bottom is held in place. The resulting shear stress, τ, deforms the rectangle into a parallelogram. The area involved would be the top of the parallelogram. Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section.
In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. [ 1 ]
If the principle of virtual work for applied forces is used on individual particles of a rigid body, the principle can be generalized for a rigid body: When a rigid body that is in equilibrium is subject to virtual compatible displacements, the total virtual work of all external forces is zero; and conversely, if the total virtual work of all ...
where b is the force acting on the body per unit mass (dimensions of acceleration, misleadingly called the "body force"), and dm = ρ dV is an infinitesimal mass element of the body. Body forces and contact forces acting on the body lead to corresponding moments ( torques ) of those forces relative to a given point.