When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    The high performance of the BERT model could also be attributed [citation needed] to the fact that it is bidirectionally trained. This means that BERT, based on the Transformer model architecture, applies its self-attention mechanism to learn information from a text from the left and right side during training, and consequently gains a deep ...

  3. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    BERT pioneered an approach involving the use of a dedicated [CLS] token prepended to the beginning of each sentence inputted into the model; the final hidden state vector of this token encodes information about the sentence and can be fine-tuned for use in sentence classification tasks. In practice however, BERT's sentence embedding with the ...

  4. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  5. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    The torch package also simplifies object-oriented programming and serialization by providing various convenience functions which are used throughout its packages. The torch.class(classname, parentclass) function can be used to create object factories ().

  6. Cognitive architecture - Wikipedia

    en.wikipedia.org/wiki/Cognitive_architecture

    The Cerebellar Model Articulation Controller (CMAC) is a type of neural network based on a model of the mammalian cerebellum. It is a type of associative memory . [ 11 ] The CMAC was first proposed as a function modeler for robotic controllers by James Albus in 1975 and has been extensively used in reinforcement learning and also as for ...

  7. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.

  8. Spreading activation - Wikipedia

    en.wikipedia.org/wiki/Spreading_activation

    Spreading activation is a method for searching associative networks, biological and artificial neural networks, or semantic networks. [1] The search process is initiated by labeling a set of source nodes (e.g. concepts in a semantic network) with weights or "activation" and then iteratively propagating or "spreading" that activation out to other nodes linked to the source nodes.

  9. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.