When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Round function - Wikipedia

    en.wikipedia.org/wiki/Round_function

    In topology and in calculus, a round function is a scalar function, over a manifold, whose critical points form one or several connected components, each homeomorphic to the circle, also called critical loops.

  3. Secant line - Wikipedia

    en.wikipedia.org/wiki/Secant_line

    Common lines and line segments on a circle, including a secant. A straight line can intersect a circle at zero, one, or two points. A line with intersections at two points is called a secant line, at one point a tangent line and at no points an exterior line. A chord is the line segment that joins two distinct points of a circle. A chord is ...

  4. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    Ptolemy used a circle of diameter 120, and gave chord lengths accurate to two sexagesimal (base sixty) digits after the integer part. [2] The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle.

  5. Roundness - Wikipedia

    en.wikipedia.org/wiki/Roundness

    Having a constant diameter, measured at varying angles around the shape, is often considered to be a simple measurement of roundness.This is misleading. [3]Although constant diameter is a necessary condition for roundness, it is not a sufficient condition for roundness: shapes exist that have constant diameter but are far from round.

  6. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Arc: any connected part of a circle. Specifying two end points of an arc and a centre allows for two arcs that together make up a full circle. Centre: the point equidistant from all points on the circle. Chord: a line segment whose endpoints lie on the circle, thus dividing a circle into two segments.

  7. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that

  8. Hall circles - Wikipedia

    en.wikipedia.org/wiki/Hall_circles

    Nichols plot of the transfer function 1/s(1+s)(1+2s) along with the modified M and N circles. To use the Hall circles, a plot of M and N circles is done over the Nyquist plot of the open-loop transfer function. The points of the intersection between these graphics give the corresponding value of the closed-loop transfer function.

  9. Locus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Locus_(mathematics)

    Each curve in this example is a locus defined as the conchoid of the point P and the line l.In this example, P is 8 cm from l. In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.