Ad
related to: examples of thermoregulation cells in food safety ppt
Search results
Results From The WOW.Com Content Network
A similar example is given by the Senegalese sole (Solea senegalensis), which, when acclimated to temperatures of 26 °C, produced a significantly higher amount of taurine, glutamate, GABA and glycine compared to acclimation to 12 °C. This may mean that the aforementioned compounds aid in antioxidant defense, osmoregulatory processes, or ...
Behavioral thermoregulation takes precedence over physiological thermoregulation since necessary changes can be affected more quickly and physiological thermoregulation is limited in its capacity to respond to extreme temperatures. [34] When the core temperature falls, the blood supply to the skin is reduced by intense vasoconstriction. [18]
The honey bee, for example, does so by contracting antagonistic flight muscles without moving its wings (see insect thermoregulation). [ 18 ] [ 19 ] [ 20 ] This form of thermogenesis is, however, only efficient above a certain temperature threshold, and below about 9–14 °C (48–57 °F), the honey bee reverts to ectothermy.
[11] [12] To prevent time-temperature abuse, the amount of time food spends in the danger zone must be minimized. [13] A logarithmic relationship exists between microbial cell death and temperature, that is, a small decrease of cooking temperature can result in considerable numbers of cells surviving the process. [14]
As in other mammals, human thermoregulation is an important aspect of homeostasis. In thermoregulation, body heat is generated mostly in the deep organs, especially the liver, brain, and heart, and in contraction of skeletal muscles. [1] Humans have been able to adapt to a great diversity of climates, including hot humid and hot arid.
Heat shock proteins (HSPs) are a family of proteins produced by cells in response to exposure to stressful conditions. They were first described in relation to heat shock, [1] but are now known to also be expressed during other stresses including exposure to cold, [2] UV light [3] and during wound healing or tissue remodeling. [4]
Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation.
Thermoregulation, or body temperature control, in animals, including humans. Subcategories. This category has the following 3 subcategories, out of 3 total. D.