When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. List of conjectures by Paul Erdős - Wikipedia

    en.wikipedia.org/wiki/List_of_conjectures_by_Paul...

    The minimum overlap problem to estimate the limit of M(n). A conjecture that the ternary expansion of contains at least one digit 2 for every >. [3] The conjecture that the Erdős–Moser equation, 1 k + 2 k + ⋯ + (m – 1) k = m k, has no solutions except 1 1 + 2 1 = 3 1.

  4. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written (). It is the coefficient of the x k term in the polynomial expansion of the binomial power (1 + x) n; this coefficient can be ...

  5. Pascal's triangle - Wikipedia

    en.wikipedia.org/wiki/Pascal's_triangle

    Several theorems related to the triangle were known, including the binomial theorem. Khayyam used a method of finding nth roots based on the binomial expansion, and therefore on the binomial coefficients. [1] Pascal's triangle was known in China during the 11th century through the work of the Chinese mathematician Jia Xian (1010–1070).

  6. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    Relationship to the binomial theorem [ edit ] The Leibniz rule bears a strong resemblance to the binomial theorem , and in fact the binomial theorem can be proven directly from the Leibniz rule by taking f ( x ) = e a x {\displaystyle f(x)=e^{ax}} and g ( x ) = e b x , {\displaystyle g(x)=e^{bx},} which gives

  7. Binomial (polynomial) - Wikipedia

    en.wikipedia.org/wiki/Binomial_(polynomial)

    The expansion of the n th power uses the numbers n rows down from the top of the triangle. An application of the above formula for the square of a binomial is the "(m, n)-formula" for generating Pythagorean triples: For m < n, let a = n 2 − m 2, b = 2mn, and c = n 2 + m 2; then a 2 + b 2 = c 2.

  8. Freshman's dream - Wikipedia

    en.wikipedia.org/wiki/Freshman's_dream

    Since a binomial coefficient is always an integer, the nth binomial coefficient is divisible by p and hence equal to 0 in the ring. We are left with the zeroth and pth coefficients, which both equal 1, yielding the desired equation. Thus in characteristic p the freshman's dream is a valid identity.

  9. Erdős–Rényi model - Wikipedia

    en.wikipedia.org/wiki/Erdős–Rényi_model

    A graph generated by the binomial model of Erdős and Rényi (p = 0.01) In the (,) model, a graph is chosen uniformly at random from the collection of all graphs which have nodes and edges. The nodes are considered to be labeled, meaning that graphs obtained from each other by permuting the vertices are considered to be distinct.