When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Octet rule - Wikipedia

    en.wikipedia.org/wiki/Octet_rule

    The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens; although more generally the ...

  3. Electron counting - Wikipedia

    en.wikipedia.org/wiki/Electron_counting

    Octet rule is used with Lewis structures for main group elements, especially the lighter ones such as carbon, nitrogen, and oxygen, 18-electron rule [2] in inorganic chemistry and organometallic chemistry of transition metals, Hückel's rule for the π-electrons of aromatic compounds,

  4. Hypervalent molecule - Wikipedia

    en.wikipedia.org/wiki/Hypervalent_molecule

    On the other hand, some compounds that are normally written with ionic bonds in order to conform to the octet rule, such as ozone O 3, nitrous oxide NNO, and trimethylamine N-oxide (CH 3) 3 NO, are found to be genuinely hypervalent. Examples of γ calculations for phosphate PO 3− 4 (γ(P) = 2.6, non-hypervalent) and orthonitrate NO 3−

  5. Lewis structure - Wikipedia

    en.wikipedia.org/wiki/Lewis_structure

    Satisfy the octet rule. Both oxygen atoms currently have 8 electrons assigned to them. The nitrogen atom has only 6 electrons assigned to it. One of the lone pairs on an oxygen atom must form a double bond, but either atom will work equally well. Therefore, there is a resonance structure. Tie up loose ends.

  6. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    Main-group atoms generally obey the octet rule, while transition metals generally obey the 18-electron rule. The noble gases (He, Ne, Ar, Kr, Xe, Rn) are less reactive than other elements because they already have a noble gas configuration. Oganesson is predicted to be more reactive due to relativistic effects for heavy atoms.

  7. Noble gas - Wikipedia

    en.wikipedia.org/wiki/Noble_gas

    2) are considered to be hypervalent because they violate the octet rule. Bonding in such compounds can be explained using a three-center four-electron bond model. [66] [67] This model, first proposed in 1951, considers bonding of three collinear atoms. For example, bonding in XeF

  8. Oxyanion - Wikipedia

    en.wikipedia.org/wiki/Oxyanion

    Many oxyanions of elements in lower oxidation state obey the octet rule and this can be used to rationalize the formulae adopted. For example, chlorine(V) has two valence electrons so it can accommodate three electron pairs from bonds with oxide ions. The charge on the ion is +5 − 3 × 2 = −1, and so the formula is ClO − 3.

  9. Electron deficiency - Wikipedia

    en.wikipedia.org/wiki/Electron_deficiency

    Alternatively, electron-deficiency describes molecules or ions that function as electron acceptors. Such electron-deficient species obey the octet rule, but they have (usually mild) oxidizing properties. [4] 1,3,5-Trinitrobenzene and related polynitrated aromatic compounds are often described as electron-deficient. [5]