When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    A convex polyhedron is a polyhedron that bounds a convex set. Every convex polyhedron can be constructed as the convex hull of its vertices, and for every finite set of points, not all on the same plane, the convex hull is a convex polyhedron. Cubes and pyramids are examples of convex polyhedra.

  3. List of polygons, polyhedra and polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons...

    Regular polyhedron. Platonic solid: Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron; Regular spherical polyhedron. Dihedron, Hosohedron; Kepler–Poinsot polyhedron (Regular star polyhedra) Small stellated dodecahedron, Great stellated dodecahedron, Great icosahedron, Great dodecahedron; Abstract regular polyhedra (Projective polyhedron)

  4. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    one degenerate polyhedron, Skilling's figure with overlapping edges. It was proven in Sopov (1970) that there are only 75 uniform polyhedra other than the infinite families of prisms and antiprisms. John Skilling discovered an overlooked degenerate example, by relaxing the condition that only two faces may meet at an edge.

  5. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    By now, polyhedra were firmly understood as three-dimensional examples of more general polytopes in any number of dimensions. The second half of the century saw the development of abstract algebraic ideas such as Polyhedral combinatorics , culminating in the idea of an abstract polytope as a partially ordered set (poset) of elements.

  6. Uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Uniform_polyhedron

    Example forms from the cube and octahedron. The convex uniform polyhedra can be named by Wythoff construction operations on the regular form. In more detail the convex uniform polyhedron are given below by their Wythoff construction within each symmetry group. Within the Wythoff construction, there are repetitions created by lower symmetry forms.

  7. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    If a simplicial polyhedron (one with all faces triangles) has all vertex degrees between four and six (inclusive) then it has an ideal representation, but the triakis tetrahedron is simplicial and non-ideal, and the 4-regular non-ideal example above shows that for non-simplicial polyhedra, having all degrees in this range does not guarantee an ...

  8. N-dimensional polyhedron - Wikipedia

    en.wikipedia.org/wiki/N-dimensional_polyhedron

    Many traditional polyhedral forms are n-dimensional polyhedra. Other examples include: A half-space is a polyhedron defined by a single linear inequality, a 1 T x ≤ b 1. A hyperplane is a polyhedron defined by two inequalities, a 1 T x ≤ b 1 and a 1 T x ≥ b 1 (which is equivalent to -a 1 T x ≤ -b 1). A quadrant in the plane.

  9. Spherical polyhedron - Wikipedia

    en.wikipedia.org/wiki/Spherical_polyhedron

    The next most popular spherical polyhedron is the beach ball, thought of as a hosohedron. Some "improper" polyhedra, such as hosohedra and their duals, dihedra, exist as spherical polyhedra, but their flat-faced analogs are degenerate. The example hexagonal beach ball, {2, 6}, is a hosohedron, and {6, 2} is its dual dihedron.