Search results
Results From The WOW.Com Content Network
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio.
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [ 1 ] : 2 These data exist on an ordinal scale , one of four levels of measurement described by S. S. Stevens in 1946.
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [ 6 ] Interval scale is also known as numerical. [ 6 ]
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
An example is a preference ranking. Some data are measured at the interval level. Numbers indicate the magnitude of difference between items, but there is no absolute zero point. Examples are attitude scales and opinion scales. Some data are measured at the ratio level. Numbers indicate magnitude of difference and there is a fixed zero point.
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
Nominal data is often compared to ordinal and ratio data to determine if individual data points influence the behavior of quantitatively driven datasets. [1] [4] For example, the effect of race (nominal) on income (ratio) could be investigated by regressing the level of income upon one or more dummy variables that specify race. When nominal ...
Categorical data is the statistical data type consisting of categorical variables or of data that has been converted into that form, for example as grouped data. More specifically, categorical data may derive from observations made of qualitative data that are summarised as counts or cross tabulations , or from observations of quantitative data ...