When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electrohydrodynamics - Wikipedia

    en.wikipedia.org/wiki/Electrohydrodynamics

    Electrohydrodynamics (EHD), also known as electro-fluid-dynamics (EFD) or electrokinetics, is the study of the dynamics of electrically charged fluids. [1] [2] Electrohydrodynamics (EHD) is a joint domain of electrodynamics and fluid dynamics mainly focused on the fluid motion induced by electric fields.

  3. Magnetohydrodynamics - Wikipedia

    en.wikipedia.org/wiki/Magnetohydrodynamics

    Two-fluid MHD describes plasmas that include a non-negligible Hall electric field. As a result, the electron and ion momenta must be treated separately. This description is more closely tied to Maxwell's equations as an evolution equation for the electric field exists. Hall

  4. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    In the electric and magnetic field formulation there are four equations that determine the fields for given charge and current distribution. A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by ...

  5. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport

  6. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    These equations can be simplified by taking advantage of the fact that the electric and magnetic fields are physically meaningful quantities that can be measured; the potentials are not. There is a freedom to constrain the form of the potentials provided that this does not affect the resultant electric and magnetic fields, called gauge freedom.

  7. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Gauss's law in its integral form is particularly useful when, by symmetry reasons, a closed surface (GS) can be found along which the electric field is uniform. The electric flux is then a simple product of the surface area and the strength of the electric field, and is proportional to the total charge enclosed by the surface. Here, the ...

  8. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    However, since the magnetic field is described as a function of electric field, the equations of both fields are coupled and together form Maxwell's equations that describe both fields as a function of charges and currents. Evidence of an electric field: styrofoam peanuts clinging to a cat's fur due to static electricity.

  9. Electrical mobility - Wikipedia

    en.wikipedia.org/wiki/Electrical_mobility

    For example, the mobility of the sodium ion (Na +) in water at 25 °C is 5.19 × 10 −8 m 2 /(V·s). [1] This means that a sodium ion in an electric field of 1 V/m would have an average drift velocity of 5.19 × 10 −8 m/s. Such values can be obtained from measurements of ionic conductivity in solution.