Ad
related to: physics example of linear motion equation
Search results
Results From The WOW.Com Content Network
The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
For example, in calculation of the motion of a torus rolling on a horizontal surface with a pearl sliding inside, the time-varying constraint forces like the angular velocity of the torus, motion of the pearl in relation to the torus made it difficult to determine the motion of the torus with Newton's equations. [7]
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...
This reduces the parametric equations of motion of the particle to a Cartesian relationship of speed versus position. This relation is useful when time is unknown. We also know that Δ r = ∫ v d t {\textstyle \Delta r=\int v\,{\text{d}}t} or Δ r {\displaystyle \Delta r} is the area under a velocity–time graph.
The action is defined by an integral, and the classical equations of motion of a system can be derived by minimizing the value of that integral. The action principle provides deep insights into physics, and is an important concept in modern theoretical physics. Various action principles and related concepts are summarized below.