Search results
Results From The WOW.Com Content Network
A more recent proof by Wadim Zudilin is more reminiscent of Apéry's original proof, [6] and also has similarities to a fourth proof by Yuri Nesterenko. [7] These later proofs again derive a contradiction from the assumption that ζ ( 3 ) {\displaystyle \zeta (3)} is rational by constructing sequences that tend to zero but are bounded below by ...
In 1840, Liouville published a proof of the fact that e 2 is irrational [10] followed by a proof that e 2 is not a root of a second-degree polynomial with rational coefficients. [11] This last fact implies that e 4 is irrational. His proofs are similar to Fourier's proof of the irrationality of e.
The irrationality exponent or Liouville–Roth irrationality measure is given by setting (,) =, [1] a definition adapting the one of Liouville numbers — the irrationality exponent () is defined for real numbers to be the supremum of the set of such that < | | < is satisfied by an infinite number of coprime integer pairs (,) with >.
Bertrand's postulate and a proof; Estimation of covariance matrices; Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational
Although this has so far not produced any results on specific numbers, it is known that infinitely many of the odd zeta constants ζ(2n + 1) are irrational. [7] In particular at least one of ζ(5), ζ(7), ζ(9), and ζ(11) must be irrational. [8] Apéry's constant has not yet been proved transcendental, but it is known to be an algebraic period ...
Proof of assertion: As a consequence of this lemma, let x be a Liouville number; as noted in the article text, x is then irrational. If x is algebraic, then by the lemma, there exists some integer n and some positive real A such that for all p , q
Proof of Bertrand's postulate; Fermat's theorem on sums of two squares; Two proofs of the Law of quadratic reciprocity; Proof of Wedderburn's little theorem asserting that every finite division ring is a field; Four proofs of the Basel problem; Proof that e is irrational (also showing the irrationality of certain related numbers) Hilbert's ...
Perhaps the numbers most easy to prove irrational are certain logarithms. Here is a proof by contradiction that log 2 3 is irrational (log 2 3 ≈ 1.58 > 0). Assume log 2 3 is rational.