When.com Web Search

  1. Ad

    related to: prove that 11 is irrational worksheet examples

Search results

  1. Results From The WOW.Com Content Network
  2. Apéry's theorem - Wikipedia

    en.wikipedia.org/wiki/Apéry's_theorem

    A more recent proof by Wadim Zudilin is more reminiscent of Apéry's original proof, [6] and also has similarities to a fourth proof by Yuri Nesterenko. [7] These later proofs again derive a contradiction from the assumption that ζ ( 3 ) {\displaystyle \zeta (3)} is rational by constructing sequences that tend to zero but are bounded below by ...

  3. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence. For example, the decimal representation of π starts with 3.14159, but no finite number of digits can represent π exactly, nor does it repeat. Conversely, a decimal expansion that terminates or repeats must be a rational number.

  4. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    Bertrand's postulate and a proof; Estimation of covariance matrices; Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational

  5. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    In 1840, Liouville published a proof of the fact that e 2 is irrational [10] followed by a proof that e 2 is not a root of a second-degree polynomial with rational coefficients. [11] This last fact implies that e 4 is irrational. His proofs are similar to Fourier's proof of the irrationality of e.

  6. Category:Irrational numbers - Wikipedia

    en.wikipedia.org/wiki/Category:Irrational_numbers

    In mathematics, an irrational number is any real number that is not a rational number, i.e., one that cannot be written as a fraction a / b with a and b integers and b not zero. This is also known as being incommensurable, or without common measure. The irrational numbers are precisely those numbers whose expansion in any given base (decimal ...

  7. Dedekind cut - Wikipedia

    en.wikipedia.org/wiki/Dedekind_cut

    Otherwise, that cut defines a unique irrational number which, loosely speaking, fills the "gap" between A and B. [3] In other words, A contains every rational number less than the cut, and B contains every rational number greater than or equal to the cut. An irrational cut is equated to an irrational number which is in neither set.

  8. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    The following famous example of a nonconstructive proof shows that there exist two irrational numbers a and b such that is a rational number. This proof uses that 2 {\displaystyle {\sqrt {2}}} is irrational (an easy proof is known since Euclid ), but not that 2 2 {\displaystyle {\sqrt {2}}^{\sqrt {2}}} is irrational (this is true, but the proof ...

  9. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    The following 1953 proof by Dov Jarden has been widely used as an example of a non-constructive proof since at least 1970: [4] [5] CURIOSA 339. A Simple Proof That a Power of an Irrational Number to an Irrational Exponent May Be Rational. is either rational or irrational. If it is rational, our statement is proved.