Ads
related to: excel find multiple criteria based on function error- How Freelancer Works
Post Your Project, Choose a
Freelancer, Get Your Job Done!
- Our Team is Here to Help
Let Our Recruiters Find The
Perfect Freelancer For Your Project
- How Freelancer Works
Search results
Results From The WOW.Com Content Network
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]
In this example a company should prefer product B's risk and payoffs under realistic risk preference coefficients. Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings such as business, government and medicine).
In a value function model, the classification rules can be expressed as follows: Alternative i is assigned to group c r if and only if + < < where V is a value function (non-decreasing with respect to the criteria) and t 1 > t 2 > ... > t k−1 are thresholds defining the category limits.
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .
Again, under certain conditions the preferences can be represented by a numeric function. Such functions are called cardinal utility functions. The article Von Neumann–Morgenstern utility theorem describes some ways by which they can be calculated. The most general situation is that there are both multiple attributes and uncertainty. For ...
It is easy to find situations for which Newton's method oscillates endlessly between two distinct values. For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x-axis at 1 and that the tangent line to f at 1 intersects the x-axis at 0. [19]
To find the best solution, one finds all solutions by the method just described and then comparatively evaluates them based upon some predefined set of criteria, the existence of which is a condition for the possibility of finding a best solution.