Ad
related to: derivative fractional order systemsgenerationgenius.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Such systems are said to have fractional dynamics. Derivatives and integrals of fractional orders are used to describe objects that can be characterized by power-law nonlocality, [2] power-law long-range dependence or fractal properties. Fractional-order systems are useful in studying the anomalous behavior of dynamical systems in physics ...
To find the α th order derivative, the n th order derivative of the integral of order (n − α) is computed, where n is the smallest integer greater than α (that is, n = ⌈α⌉). The Riemann–Liouville fractional derivative and integral has multiple applications such as in case of solutions to the equation in the case of multiple systems ...
A fractional-order integrator or just simply fractional integrator is an integrator device that calculates the fractional-order integral or derivative (usually called a differintegral) of an input. Differentiation or integration is a real or complex parameter.
Fractional-order control (FOC) is a field of control theory that uses the fractional-order integrator as part of the control system design toolkit. The use of fractional calculus can improve and generalize well-established control methods and strategies. [1] The fundamental advantage of FOC is that the fractional-order integrator weights ...
In mathematics, the Caputo fractional derivative, also called Caputo-type fractional derivative, is a generalization of derivatives for non-integer orders named after Michele Caputo. Caputo first defined this form of fractional derivative in 1967.
In mathematics, the Grünwald–Letnikov derivative is a basic extension of the derivative in fractional calculus that allows one to take the derivative a non-integer number of times. It was introduced by Anton Karl Grünwald (1838–1920) from Prague , in 1867, and by Aleksey Vasilievich Letnikov (1837–1888) in Moscow in 1868.
An alternative fractional derivative was introduced by Caputo in 1967, [7] and produces a derivative that has different properties: it produces zero from constant functions and, more importantly, the initial value terms of the Laplace Transform are expressed by means of the values of that function and of its derivative of integer order rather ...
The fractional Chebyshev collocation (FCC) method [1] is an efficient spectral method for solving a system of linear fractional-order differential equations (FDEs) with discrete delays. The FCC method overcomes several limitations of current numerical methods for solving linear FDEs.