When.com Web Search

  1. Ads

    related to: exact zeros calculator calculus

Search results

  1. Results From The WOW.Com Content Network
  2. Closed and exact differential forms - Wikipedia

    en.wikipedia.org/wiki/Closed_and_exact...

    In mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (dα = 0), and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the image of d, and a closed form is in the kernel of d.

  3. Exact differential - Wikipedia

    en.wikipedia.org/wiki/Exact_differential

    In multivariate calculus, a differential or differential form is said to be exact or perfect (exact differential), as contrasted with an inexact differential, if it is equal to the general differential for some differentiable function in an orthogonal coordinate system (hence is a multivariable function whose variables are independent, as they are always expected to be when treated in ...

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  5. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In various areas of mathematics, the zero set of a function is the set of all its zeros. More precisely, if f : X → R {\displaystyle f:X\to \mathbb {R} } is a real-valued function (or, more generally, a function taking values in some additive group ), its zero set is f − 1 ( 0 ) {\displaystyle f^{-1}(0)} , the inverse image of { 0 ...

  6. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  7. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    In particular, if the derivative exists, it must be zero at c. By assumption, f is continuous on [a, b], and by the extreme value theorem attains both its maximum and its minimum in [a, b]. If these are both attained at the endpoints of [a, b], then f is constant on [a, b] and so the derivative of f is zero at every point in (a, b).

  8. Exact differential equation - Wikipedia

    en.wikipedia.org/wiki/Exact_differential_equation

    Given a simply connected and open subset D of and two functions I and J which are continuous on D, an implicit first-order ordinary differential equation of the form (,) + (,) =,is called an exact differential equation if there exists a continuously differentiable function F, called the potential function, [1] [2] so that

  9. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    The exact solution is () =, which decays to zero as . However, if the Euler method is applied to this equation with step size h = 1 {\displaystyle h=1} , then the numerical solution is qualitatively wrong: It oscillates and grows (see the figure).