When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    In the 10th century, the Iraqi mathematician Al-Hashimi worked with numbers as such, called "lines" but not necessarily considered as measurements of geometric objects, to prove algebraic propositions concerning multiplication, division, etc., including the existence of irrational numbers. [11]

  3. List of incomplete proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_incomplete_proofs

    One of many examples from algebraic geometry in the first half of the 20th century: Severi (1946) claimed that a degree-n surface in 3-dimensional projective space has at most (n+2 3 )−4 nodes, B. Segre pointed out that this was wrong; for example, for degree 6 the maximum number of nodes is 65, achieved by the Barth sextic , which is more ...

  4. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    Group (mathematics) Halting problem. insolubility of the halting problem; Harmonic series (mathematics) divergence of the (standard) harmonic series; Highly composite number; Area of hyperbolic sector, basis of hyperbolic angle; Infinite series. convergence of the geometric series with first term 1 and ratio 1/2; Integer partition; Irrational ...

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    The Game of Trees is a Mad Math Theory That Is Impossible to Prove. ... It turns out functions like this have certain properties that cast insight into math topics like Algebra and Number Theory ...

  6. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.

  7. Proof theory - Wikipedia

    en.wikipedia.org/wiki/Proof_theory

    Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. [5] The field was founded by Harvey Friedman . Its defining method can be described as "going backwards from the theorems to the axioms ", in contrast to the ordinary mathematical practice of deriving ...

  8. Convergence proof techniques - Wikipedia

    en.wikipedia.org/wiki/Convergence_proof_techniques

    Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.

  9. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.