Ads
related to: satellite antenna gain calculator
Search results
Results From The WOW.Com Content Network
G/T is the figure of merit for a satellite system. G is the Receive antenna gain. T is the system noise temperature. System noise temperature = antenna noise temperature + Receiver noise temperature (LNA) Antenna noise temperature is the noise power seen at the receive output of the antenna. (To LNA) If we are not measuring with an LNA or ...
When considering an antenna's directional pattern, gain with respect to a dipole does not imply a comparison of that antenna's gain in each direction to a dipole's gain in that direction. Rather, it is a comparison between the antenna's gain in each direction to the peak gain of the dipole (1.64). In any direction, therefore, such numbers are 2 ...
and is the logarithmic gain of the antenna in decibels. The antenna noise temperature depends on antenna coupling to all noise sources in its environment as well as on noise generated within the antenna. That is, in a directional antenna, the portion of the noise source that the antenna's main and side lobes intersect contribute proportionally.
The Deep Space Network has been able to maintain the link at a higher than expected bitrate through a series of improvements, such as increasing the antenna size from 64 m to 70 m for a 1.2 dB gain, and upgrading to low noise electronics for a 0.5 dB gain in 2000–2001.
Free-space loss increases with the square of distance between the antennas because the radio waves spread out by the inverse square law and decreases with the square of the wavelength of the radio waves. The FSPL is rarely used standalone, but rather as a part of the Friis transmission formula, which includes the gain of antennas. [3]
An antenna designer must take into account the application for the antenna when determining the gain. High-gain antennas have the advantage of longer range and better signal quality, but must be aimed carefully in a particular direction. Low-gain antennas have shorter range, but the orientation of the antenna is inconsequential.
Applying the above formula to the 25-meter-diameter antennas often used in radio telescope arrays and satellite ground antennas at a wavelength of 21 cm (1.42 GHz, a common radio astronomy frequency), yields an approximate maximum gain of 140,000 times or about 52 dBi (decibels above the isotropic level).
Note that for a given antenna feedpoint impedance, an antenna's gain or increases according to the square of , so that the effective length for an antenna relative to different wave directions follows the square root of the gain in those directions. But since changing the physical size of an antenna inevitably changes the impedance (often by a ...