When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isothermal process - Wikipedia

    en.wikipedia.org/wiki/Isothermal_process

    An isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium).

  3. Adiabatic process - Wikipedia

    en.wikipedia.org/wiki/Adiabatic_process

    An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work.

  4. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    The Carnot cycle is a cycle composed of the totally reversible processes of isentropic compression and expansion and isothermal heat addition and rejection. The thermal efficiency of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:

  5. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    Classical thermodynamics considers three main kinds of thermodynamic processes: (1) changes in a system, (2) cycles in a system, and (3) flow processes. (1) A Thermodynamic process is a process in which the thermodynamic state of a system is changed.

  6. Reversible process (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Reversible_process...

    The dependence of work on the path of the thermodynamic process is also unrelated to reversibility, since expansion work, which can be visualized on a pressure–volume diagram as the area beneath the equilibrium curve, is different for different reversible expansion processes (e.g. adiabatic, then isothermal; vs. isothermal, then adiabatic ...

  7. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    In paper, [9] the authors proposed a different thermal expansion equation of state, which consists of isothermal compression at room temperature, following by thermal expansion at high pressure. To distinguish these two thermal expansion equations of state, the latter one is called pressure-dependent thermal expansion equation of state.

  8. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): = = Here is the thermal expansion coefficient: = is the isothermal compressibility (the inverse of the bulk modulus):

  9. Temperature–entropy diagram - Wikipedia

    en.wikipedia.org/wiki/Temperature–entropy_diagram

    An isentropic process is depicted as a vertical line on a T–s diagram, whereas an isothermal process is a horizontal line. [2] Example T–s diagram for a thermodynamic cycle taking place between a hot reservoir (T H) and a cold reservoir (T C). For reversible processes, such as those found in the Carnot cycle: