Ad
related to: atmospheric convection
Search results
Results From The WOW.Com Content Network
Atmospheric convection is the result of a parcel-environment instability (temperature difference layer) in the atmosphere. [ jargon ] Different lapse rates within dry and moist air masses lead to instability.
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
Some more localized phenomena than global atmospheric movement are also due to convection, including wind and some of the hydrologic cycle. For example, a foehn wind is a down-slope wind which occurs on the downwind side of a mountain range.
The atmospheric circulation can be viewed as a heat engine driven by the Sun's energy and whose energy sink, ultimately, is the blackness of space. The work produced by that engine causes the motion of the masses of air, and in that process it redistributes the energy absorbed by the Earth's surface near the tropics to the latitudes nearer the ...
Deep, moist convection requires a parcel to be lifted to the LFC where it then rises spontaneously until reaching a layer of non-positive buoyancy. The atmosphere is warm at the surface and lower levels of the troposphere where there is mixing (the planetary boundary layer (PBL) ), but becomes substantially cooler with height.
In 1963, Edward Lorenz, with the help of Ellen Fetter who was responsible for the numerical simulations and figures, [1] and Margaret Hamilton who helped in the initial, numerical computations leading up to the findings of the Lorenz model, [2] developed a simplified mathematical model for atmospheric convection. [1]
The temperature profile of the atmosphere is a result of the interaction between radiative heating from sunlight, cooling to space via thermal radiation, and upward heat transport via natural convection (which carries hot air and latent heat upward). Above the tropopause, convection does not occur and all cooling is radiative.
This color schlieren image reveals thermal convection from a human hand (in silhouette form) to the surrounding still atmosphere. Two types of convective heat transfer may be distinguished: Free or natural convection : when fluid motion is caused by buoyancy forces that result from the density variations due to variations of thermal ± ...