When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    The inverse is "If an object is not red, then it does not have color." An object which is blue is not red, and still has color. Therefore, in this case the inverse is false. The converse is "If an object has color, then it is red." Objects can have other colors, so the converse of our statement is false.

  3. Converse (logic) - Wikipedia

    en.wikipedia.org/wiki/Converse_(logic)

    In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of ...

  4. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    P ' is the inverse of P with respect to the circle. To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P ', lying on the ray from O through P ...

  5. Converse relation - Wikipedia

    en.wikipedia.org/wiki/Converse_relation

    In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.

  6. Glossary of algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_algebraic_geometry

    This is a glossary of algebraic geometry. See also glossary of commutative algebra , glossary of classical algebraic geometry , and glossary of ring theory . For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry .

  7. Inverse curve - Wikipedia

    en.wikipedia.org/wiki/Inverse_curve

    In inversive geometry, an inverse curve of a given curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP·OQ = k 2. The inverse of the curve C is then the locus of P as Q runs over C.

  8. Pole and polar - Wikipedia

    en.wikipedia.org/wiki/Pole_and_polar

    Illustration of the duality between points and lines, and the double meaning of "incidence". If two lines a and k pass through a single point Q, then the polar q of Q joins the poles A and K of the lines a and k, respectively. The concepts of a pole and its polar line were advanced in projective geometry.

  9. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...