Search results
Results From The WOW.Com Content Network
Here is a similar formula from the 67th edition of the CRC handbook. Note that the form of this formula as given is a fit to the Clausius–Clapeyron equation, which is a good theoretical starting point for calculating saturation vapor pressures:
Pitzer equations [1] are important for the understanding of the behaviour of ions dissolved in natural waters such as rivers, lakes and sea-water. [2] [3] [4] They were first described by physical chemist Kenneth Pitzer. [5]
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
Lambda (written λ, in lowercase) is a non-SI unit of volume equal to 10 −9 m 3, 1 cubic millimetre (mm 3) or 1 microlitre (μL). Introduced by the BIPM in 1880, [ 1 ] the lambda has been used in chemistry [ 2 ] and in law for measuring volume, but its use is not recommended.
A dish of ethanol aflame. Various alcohols are used as fuel for internal combustion engines.The first four aliphatic alcohols (methanol, ethanol, propanol, and butanol) are of interest as fuels because they can be synthesized chemically or biologically, and they have characteristics which allow them to be used in internal combustion engines.
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
The recommendations take up over 300 pages [1] and the full text can be downloaded from IUPAC. [2] Corrections have been issued. [3] Apart from a reorganisation of the content, there is a new section on organometallics and a formal element list to be used in place of electronegativity lists in sequencing elements in formulae and names. The ...
DePriester Charts provide an efficient method to find the vapor-liquid equilibrium ratios for different substances at different conditions of pressure and temperature. The original chart was put forth by C.L. DePriester in an article in Chemical Engineering Progress in 1953.