Search results
Results From The WOW.Com Content Network
Semiconservative replication describes the mechanism of DNA replication in all known cells. DNA replication occurs on multiple origins of replication along the DNA template strands. As the DNA double helix is unwound by helicase, replication occurs separately on each template strand in antiparallel directions. This process is known as semi ...
After one replication, the DNA was found to have intermediate density. Since conservative replication would result in equal amounts of DNA of the higher and lower densities (but no DNA of an intermediate density), conservative replication was excluded. However, this result was consistent with both semiconservative and dispersive replication.
Each strand of the original DNA molecule then serves as a template for the production of its counterpart, a process referred to as semiconservative replication. As a result of semi-conservative replication, the new helix will be composed of an original DNA strand as well as a newly synthesized strand. [7]
Matthew Stanley Meselson (born May 24, 1930) is a geneticist and molecular biologist currently at Harvard University, known for his demonstration, with Franklin Stahl, of semi-conservative DNA replication.
DNA replication is the semi-conservative, biological process of two DNA strands copying themselves, resulting in two identical copies of DNA. [4] [5] This process is considered semi-conservative because, after replication, each copy of DNA contains a strand from the original DNA molecule and a strand from the newly-synthesized DNA molecule. [5]
Conservative reassembly of core H3/H4 nucleosome behind the replication fork. Free histones produced by the cell during S-phase are rapidly incorporated into new nucleosomes. This process is closely tied to the replication fork, occurring immediately in “front” and “behind” the replication complex.
New strands are created by enzymes called DNA polymerases. Both of these follow a similar pattern, called semi-conservative replication, in which individual strands of DNA are produced in different directions, which makes a leading and lagging strand. These lagging strands are synthesized by the production of Okazaki fragments that are soon joined.
Eukaryotic DNA replication. Eukaryotic DNA replication is a conserved mechanism that restricts DNA replication to once per cell cycle. Eukaryotic DNA replication of chromosomal DNA is central for the duplication of a cell and is necessary for the maintenance of the eukaryotic genome.