Search results
Results From The WOW.Com Content Network
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The sensitivity of the instrument comes from the weak spring constant of the fiber, so a very weak force causes a large rotation of the bar. In Coulomb's experiment, the torsion balance was an insulating rod with a metal-coated ball attached to one end, suspended by a silk thread.
The rate or spring constant of a spring is the change in the force it exerts, divided by the change in deflection of the spring. That is, it is the gradient of the force versus deflection curve. An extension or compression spring's rate is expressed in units of force divided by distance, for example or N/m or lbf/in.
Belleville spring stack in series Belleville spring stack in parallel. Multiple Belleville washers may be stacked to modify the spring constant (or spring rate) or the amount of deflection. Stacking in the same direction will add the spring constant in parallel, creating a stiffer joint (with the same deflection).
A prototypical elastic component is a coiled spring. The linear elastic performance of a spring is parametrized by a constant of proportionality, called the spring constant. This constant is usually denoted as k (see also Hooke's Law ) and depends on the geometry, cross-sectional area, undeformed length and nature of the material from which the ...
For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is = where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.
A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being ...