When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    The method is based on the observation that, for any integer >, one has: = {() /, /,. If the exponent n is zero then the answer is 1. If the exponent is negative then we can reuse the previous formula by rewriting the value using a positive exponent.

  3. Scratch (programming language) - Wikipedia

    en.wikipedia.org/wiki/Scratch_(programming_language)

    Projects created and remixed with Scratch are licensed under the Creative Commons Attribution-Share Alike License. [54] Scratch automatically gives credit to the user who created the original project and program in the top part of the project page. [21] Scratch was developed based on ongoing interaction with youth and staff at Computer Clubhouses.

  4. Wheat and chessboard problem - Wikipedia

    en.wikipedia.org/wiki/Wheat_and_chessboard_problem

    When expressed as exponents, the geometric series is: 2 0 + 2 1 + 2 2 + 2 3 + ... and so forth, up to 2 63. The base of each exponentiation, "2", expresses the doubling at each square, while the exponents represent the position of each square (0 for the first square, 1 for the second, and so on.). The number of grains is the 64th Mersenne number.

  5. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [26]

  6. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    To derive the value of the floating-point number, the significand is multiplied by the base raised to the power of the exponent, equivalent to shifting the radix point from its implied position by a number of places equal to the value of the exponent—to the right if the exponent is positive or to the left if the exponent is negative.

  7. Monomial - Wikipedia

    en.wikipedia.org/wiki/Monomial

    The degree of a monomial is defined as the sum of all the exponents of the variables, including the implicit exponents of 1 for the variables which appear without exponent; e.g., in the example of the previous section, the degree is + +. The degree of is 1+1+2=4. The degree of a nonzero constant is 0.

  8. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Inputs An integer b (base), integer e (exponent), and a positive integer m (modulus) Outputs The modular exponent c where c = b e mod m. Initialise c = 1 and loop variable e′ = 0; While e′ < e do Increment e′ by 1; Calculate c = (b ⋅ c) mod m; Output c; Note that at the end of every iteration through the loop, the equation c ≡ b e ...

  9. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.