Search results
Results From The WOW.Com Content Network
[10] [11] [12] The most common liquids used in cooking are water and milk, milk having approximately the same density as water. 1 mL of water weighs 1 gram so a recipe calling for 300 mL (≈ 1 ⁄ 2 Imperial Pint) of water can simply be substituted with 300 g (≈ 10 oz.) of water.
[4] [5] The mouthful was still a unit of liquid measure during Elizabethan times. [6] The principal Egyptian standards from small to large were the ro, hin, hekat , and khar.) [ 7 ] Because of the lack of official definitions, many of these units will not have a consistent value.
An imperial fluid ounce is 1 ⁄ 20 of an imperial pint, 1 ⁄ 160 of an imperial gallon or exactly 28.4130625 mL. A US customary fluid ounce is 1 ⁄ 16 of a US liquid pint and 1 ⁄ 128 of a US liquid gallon or exactly 29.5735295625 mL, making it about 4.08% larger than the imperial fluid ounce. A US food labeling fluid ounce is exactly 30 mL.
For example, a length that is significantly longer or shorter than 1 metre can be represented in units that are a power of 10 or 1000 metres. This differs from many older systems in which the ratio of different units varied. For example, 12 inches is one foot, but the larger unit in the same system, the mile is not a power of 12 feet. It is ...
the statistical confidence interval or tolerance interval of the initial measurement; the number of significant figures of the measurement; the intended use of the measurement, including the engineering tolerances; historical definitions of the units and their derivatives used in old measurements; e.g., international foot vs. US survey foot.
Metric units are units based on the metre, gram or second and decimal (power of ten) multiples or sub-multiples of these. According to Schadow and McDonald, [1] metric units, in general, are those units "defined 'in the spirit' of the metric system, that emerged in late 18th century France and was rapidly adopted by scientists and engineers.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The base units are defined in terms of the defining constants. For example, the kilogram is defined by taking the Planck constant h to be 6.626 070 15 × 10 −34 J⋅s, giving the expression in terms of the defining constants [1]: 131 1 kg = (299 792 458) 2 / (6.626 070 15 × 10 −34)(9 192 631 770) h Δν Cs / c 2 .