Search results
Results From The WOW.Com Content Network
Cauchy–Schwarz inequality (Modified Schwarz inequality for 2-positive maps [27]) — For a 2-positive map between C*-algebras, for all , in its domain, () ‖ ‖ (), ‖ ‖ ‖ ‖ ‖ ‖. Another generalization is a refinement obtained by interpolating between both sides of the Cauchy–Schwarz inequality:
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.
In mathematics, specifically in complex analysis, Cauchy's estimate gives local bounds for the derivatives of a holomorphic function. These bounds are optimal. These bounds are optimal. Cauchy's estimate is also called Cauchy's inequality , but must not be confused with the Cauchy–Schwarz inequality .
Schwarz's works include Bestimmung einer speziellen Minimalfläche, which was crowned by the Berlin Academy in 1867 and printed in 1871, and Gesammelte mathematische Abhandlungen (1890). Among other things, Schwarz improved the proof of the Riemann mapping theorem , [ 6 ] developed a special case of the Cauchy–Schwarz inequality , and gave a ...
Theorem — Every ... Cauchy-Schwarz inequality. The Cauchy-Schwarz inequality for complex random variables, which can be derived using the Triangle inequality and ...
In mathematics, the following inequality is known as Titu's lemma, Bergström's inequality, Engel's form or Sedrakyan's inequality, respectively, referring to the article About the applications of one useful inequality of Nairi Sedrakyan published in 1997, [1] to the book Problem-solving strategies of Arthur Engel published in 1998 and to the book Mathematical Olympiad Treasures of Titu ...
Cauchy's inequality may refer to: the Cauchy–Schwarz inequality in a real or complex inner product space Cauchy's estimate , also called Cauchy's inequality, for the Taylor series coefficients of a complex analytic function
The Paley–Zygmund inequality is sometimes used instead of the Cauchy–Schwarz inequality and may occasionally give more refined results. Under the (incorrect) assumption that the events v , u in K are always independent, one has Pr ( v , u ∈ K ) = Pr ( v ∈ K ) Pr ( u ∈ K ) {\displaystyle \Pr(v,u\in K)=\Pr(v\in K)\,\Pr(u\in K)} , and ...