Search results
Results From The WOW.Com Content Network
A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose – either a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic one.
By definition, biodegradable materials are formed or organic compounds which can thus be broken down by living organisms, such as bacteria, fungi, or water molds, and reabsorbed by the natural environment. [13] Whether a material is biodegradable is determined by its chemical structure, not the origin of the material from which it is made. [14]
In the literature, one quite often stumbles upon the adjective form, ‘biocompatible’. However, according to Williams’ definition, this does not make any sense because biocompatibility is contextual, i.e. much more than just the material itself will determine the clinical outcome of the medical device of which the biomaterial is a part.
A biomaterial is any matter, surface, or construct that interacts with biological systems. [23] Biomaterials science encompasses elements of medicine, biology, chemistry, tissue engineering, and materials science.
Biomaterial, any substance that has been engineered to interact with biological systems for a medical purpose Topics referred to by the same term This disambiguation page lists articles associated with the title Biological material .
At first, the study of biometals was referred to as bioinorganic chemistry. Each branch of bioinorganic chemistry studied separate, particular sub-fields of the subject. However, this led to an isolated view of each particular aspect in a biological system. This view was revised into a holistic approach of biometals in metallomics. [2]
A material is a substance or mixture of substances that constitutes an object.Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geological origin or biological function.
Hardness is one of the most important parameters for comparing properties of materials. It is used for finding the suitability of the clinical use of biomaterials. Biomaterial hardness is desirable as equal to bone hardness. If higher than the biomaterial, then it penetrates in the bone. Higher hardness results in less abrasion.