When.com Web Search

  1. Ad

    related to: how to predict rate law of increase calculator calculus

Search results

  1. Results From The WOW.Com Content Network
  2. Related rates - Wikipedia

    en.wikipedia.org/wiki/Related_rates

    In differential calculus, related rates problems involve finding a rate at which a quantity changes by relating that quantity to other quantities whose rates of change are known. The rate of change is usually with respect to time. Because science and engineering often relate quantities to each other, the methods of related rates have broad ...

  3. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    An intuitive interpretation of the gradient is that it points "up": in other words, it points in the direction of fastest increase of the function. It can be used to calculate directional derivatives of scalar functions or normal directions. Divergence gives a measure of how much "source" or "sink" near a point there is.

  4. Third derivative - Wikipedia

    en.wikipedia.org/wiki/Third_derivative

    In calculus, a branch of mathematics, the third derivative or third-order derivative is the rate at which the second derivative, or the rate of change of the rate of change, is changing. The third derivative of a function y = f ( x ) {\displaystyle y=f(x)} can be denoted by

  5. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  6. Rate (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rate_(mathematics)

    In mathematics, a rate is the quotient of two quantities, often represented as a fraction. [1] If the divisor (or fraction denominator) in the rate is equal to one expressed as a single unit, and if it is assumed that this quantity can be changed systematically (i.e., is an independent variable), then the dividend (the fraction numerator) of the rate expresses the corresponding rate of change ...

  7. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    For any fixed b not equal to 1 (e.g. e or 2), the growth rate is given by the non-zero time τ. For any non-zero time τ the growth rate is given by the dimensionless positive number b. Thus the law of exponential growth can be written in different but mathematically equivalent forms, by using a different base.

  8. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Meanwhile, calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the study of continuous change. Discrete calculus has two entry points, differential calculus and integral calculus. Differential calculus concerns incremental rates of change and the slopes of piece-wise linear curves.

  9. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The values of the function are represented in greyscale and increase in value from white (low) to dark (high). In vector calculus , the gradient of a scalar-valued differentiable function f {\displaystyle f} of several variables is the vector field (or vector-valued function ) ∇ f {\displaystyle \nabla f} whose value at a point p ...