When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Zero divisor - Wikipedia

    en.wikipedia.org/wiki/Zero_divisor

    In a commutative ring R, the set of non-zero-divisors is a multiplicative set in R. (This, in turn, is important for the definition of the total quotient ring.) The same is true of the set of non-left-zero-divisors and the set of non-right-zero-divisors in an arbitrary ring, commutative or not.

  3. Divisibility (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Divisibility_(ring_theory)

    If one interprets the definition of divisor literally, every a is a divisor of 0, since one can take x = 0. Because of this, it is traditional to abuse terminology by making an exception for zero divisors: one calls an element a in a commutative ring a zero divisor if there exists a nonzero x such that ax = 0. [2]

  4. Integral domain - Wikipedia

    en.wikipedia.org/wiki/Integral_domain

    An integral domain is a nonzero commutative ring with no nonzero zero divisors. An integral domain is a commutative ring in which the zero ideal {0} is a prime ideal. An integral domain is a nonzero commutative ring for which every nonzero element is cancellable under multiplication.

  5. Zero ring - Wikipedia

    en.wikipedia.org/wiki/Zero_ring

    The zero ring is the unique ring of characteristic 1. The only module for the zero ring is the zero module. It is free of rank א for any cardinal number א. The zero ring is not a local ring. It is, however, a semilocal ring. The zero ring is Artinian and (therefore) Noetherian. The spectrum of the zero ring is the empty scheme. [8]

  6. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    A left zero divisor of a ring R is an element a in the ring such that there exists a nonzero element b of R such that ab = 0. [d] A right zero divisor is defined similarly. A nilpotent element is an element a such that a n = 0 for some n > 0. One example of a nilpotent element is a nilpotent matrix.

  7. Domain (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Domain_(ring_theory)

    Zero divisors have a topological interpretation, at least in the case of commutative rings: a ring R is an integral domain if and only if it is reduced and its spectrum Spec R is an irreducible topological space. The first property is often considered to encode some infinitesimal information, whereas the second one is more geometric.

  8. Reduced ring - Wikipedia

    en.wikipedia.org/wiki/Reduced_ring

    More generally, every integral domain is a reduced ring since a nilpotent element is a fortiori a zero-divisor. On the other hand, not every reduced ring is an integral domain; for example, the ring Z[x, y]/(xy) contains x + (xy) and y + (xy) as zero-divisors, but no non-zero nilpotent elements.

  9. Torsion (algebra) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(algebra)

    In an integral domain (a commutative ring without zero divisors), every non-zero element is regular, so a torsion element of a module over an integral domain is one annihilated by a non-zero element of the integral domain. Some authors use this as the definition of a torsion element, but this definition does not work well over more general rings.