Search results
Results From The WOW.Com Content Network
A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...
Let : a function between topological vector spaces is said to be a locally bounded function if every point of has a neighborhood whose image under is bounded. The following theorem relates local boundedness of functions with the local boundedness of topological vector spaces:
Every uniformly convergent sequence of bounded functions is uniformly bounded. The family of functions () = defined for real with traveling through the integers, is uniformly bounded by 1. The family of derivatives of the above family, ′ = , is not uniformly bounded.
The first inequality (that is, ‖ ‖ < for all ) states that the functionals in are pointwise bounded while the second states that they are uniformly bounded. The second supremum always equals ‖ ‖ (,) = ‖ ‖, ‖ ‖ and if is not the trivial vector space (or if the supremum is taken over [,] rather than [,]) then closed unit ball can be replaced with the unit sphere
SBV functions i.e. Special functions of Bounded Variation were introduced by Luigi Ambrosio and Ennio De Giorgi in the paper (Ambrosio & De Giorgi 1988), dealing with free discontinuity variational problems: given an open subset of , the space is a proper linear subspace of (), since the weak gradient of each function belonging to it ...
Bounded poset, a partially ordered set that has both a greatest and a least element; Bounded set, a set that is finite in some sense Bounded function, a function or sequence whose possible values form a bounded set; Bounded set (topological vector space), a set in which every neighborhood of the zero vector can be inflated to include the set
The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces. Outside of functional analysis, when a function : is called "bounded" then this usually means that its image is a bounded subset of its codomain.
Any function of bounded type in the upper half-plane (with a finite number of roots in some neighborhood of 0) can be expressed as a Blaschke product (an analytic function, bounded in the region, which factors out the zeros) multiplying the quotient () / where () and () are bounded by 1 and have no zeros in the UHP. One can then express this ...