Search results
Results From The WOW.Com Content Network
The radar "looks" with the looking angle θ (or so called off-nadir angle). The angle α between x-axis and the line of sight (LOS) is called cone angle, the angle φ between the x-axis and the projection of the line of sight to the (x; y)-plane is called azimuth angle. Cone- and azimuth angle are related by cosα = cosφ ∙ cosε.
A pencil-beam radar A moving or sweeping pencil-beam radar. In optics, a pencil or pencil of rays, also known as a pencil beam or narrow beam, is a geometric construct (pencil of half-lines) used to describe a beam or portion of a beam of electromagnetic radiation or charged particles, typically in the form of a cone or cylinder.
Radar engineering is the design of technical aspects pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment.
The AN/APG-68 radar is a long range (maximum detection range 80 kilometres [50 mi]) [2] Pulse-Doppler radar designed by Westinghouse (now Northrop Grumman) to replace AN/APG-66 radar in the General Dynamics F-16 Fighting Falcon. The AN/APG-68 radar is now currently being replaced on US Air Force F-16C/D Block 40/42 and 50/52 by the AN/APG-83 ...
Conical scanning concept. The radar beam is rotated in a small circle around the "boresight" axis, which is pointed at the target. Conical scanning is a system used in early radar units to improve their accuracy, as well as making it easier to steer the antenna properly to point at a target.
The AN/APG-66 radar is an X-band [1] solid state medium range (up to 80 nautical miles (150 km; 92 mi)) pulse-Doppler planar array radar originally designed by the Westinghouse Electric Corporation (now Northrop Grumman) for use in early generations of the F-16 Fighting Falcon. Later F-16 variants use the AN/APG-68 or the AN/APG-83.
The AN/APG-77 system itself exhibits a very low radar cross-section, supporting the F-22's stealthy design. [3] The upgraded APG-77(V)1 may have an even greater range. Much of the technology developed for the APG-77 was used in the AN/APG-81 radar for the F-35 Lightning II , and in turn the technology from the APG-81 was applied to the upgraded ...
The radar mile is the time it takes for a radar pulse to travel one nautical mile, reflect off a target, and return to the radar antenna. Since a nautical mile is defined as 1,852 m, then dividing this distance by the speed of light (299,792,458 m/s), and then multiplying the result by 2 yields a result of 12.36 μs in duration.