When.com Web Search

  1. Ads

    related to: complete the square examples of real numbers algebra

Search results

  1. Results From The WOW.Com Content Network
  2. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form ⁠ + + ⁠ to the form ⁠ + ⁠ for some values of ⁠ ⁠ and ⁠ ⁠. [1] In terms of a new quantity ⁠ x − h {\displaystyle x-h} ⁠ , this expression is a quadratic polynomial with no linear term.

  3. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).

  4. Square (algebra) - Wikipedia

    en.wikipedia.org/wiki/Square_(algebra)

    For this reason, it is possible to define the square root function, which associates with a non-negative real number the non-negative number whose square is the original number. No square root can be taken of a negative number within the system of real numbers, because squares of all real numbers are non-negative. The lack of real square roots ...

  5. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    Informally, a field is a set, along with two operations defined on that set: an addition operation written as a + b, and a multiplication operation written as a ⋅ b, both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an additive inverse −a for all elements a, and of a multiplicative inverse b −1 for every nonzero element b.

  6. Construction of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Construction_of_the_real...

    An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...

  7. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficients has a solution which is a complex number. For example, the equation (+) = has no real solution, because the square of a real number cannot be negative, but has the two nonreal complex solutions + and .