Search results
Results From The WOW.Com Content Network
The word "bounded" makes no sense in a general topological space without a corresponding metric. Boundary is a distinct concept; for example, a circle (not to be confused with a disk) in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary. A bounded set is not necessarily a closed set and vice
In computer science, a rough set, first described by Polish computer scientist Zdzisław I. Pawlak, is a formal approximation of a crisp set (i.e., ...
[2] [3] Dually, a lower bound or minorant of S is defined to be an element of K that is less than or equal to every element of S. A set with an upper (respectively, lower) bound is said to be bounded from above or majorized [1] (respectively bounded from below or minorized) by that bound.
Bounded sets are a natural way to define locally convex polar topologies on the vector spaces in a dual pair, as the polar set of a bounded set is an absolutely convex and absorbing set. The concept was first introduced by John von Neumann and Andrey Kolmogorov in 1935.
A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...
The embedding of X into Y is a compact operator: any bounded set in X is totally bounded in Y, i.e. every sequence in such a bounded set has a subsequence that is Cauchy in the norm ||•|| Y. If Y is a Banach space, an equivalent definition is that the embedding operator (the identity) i : X → Y is a compact operator.
Several set operations have been defined on weight-balanced trees: union, intersection and set difference. Then fast bulk operations on insertions or deletions can be implemented based on these set functions. These set operations rely on two helper operations, Split and Join. With the new operations, the implementation of weight-balanced trees ...
In mathematics, a uniformly bounded family of functions is a family of bounded functions that can all be bounded by the same constant. This constant is larger than or equal to the absolute value of any value of any of the functions in the family.