Search results
Results From The WOW.Com Content Network
If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is = = , where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m 2 , S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S.
This situation is analyzed in the article, in which, when writing the integral equations of the electromagnetic field in a four-dimensional covariant form, in the Faraday’s law the total time derivative of the magnetic flux through the circuit appears instead of the partial time derivative. [36]
The paradox appears a bit different from the lines of flux viewpoint: in Faraday's model of electromagnetic induction, a magnetic field consisted of imaginary lines of magnetic flux, similar to the lines that appear when iron filings are sprinkled on paper and held near a magnet. The EMF is proposed to be proportional to the rate of cutting ...
The Maxwell–Faraday version of Faraday's law of induction describes how a time-varying magnetic field corresponds to curl of an electric field. [3] In integral form, it states that the work per unit charge required to move a charge around a closed loop equals the rate of change of the magnetic flux through the enclosed surface.
In this experiment, a static magnetic field runs through a long magnetic wire (e.g., an iron wire magnetized longitudinally). Outside of this wire the magnetic induction is zero, in contrast to the vector potential, which essentially depends on the magnetic flux through the cross-section of the wire and does not vanish outside.
The magnetic moment of an object is an intrinsic property and does not change with distance, and thus can be used to measure "how strong" a magnet is. For example, Earth possesses an enormous magnetic moment, however we are very distant from its center and experience only a tiny magnetic flux density (measured in tesla ) on its surface.
Magnetic fields similar to Earth's are common throughout known space and many undergo similar flux transfer events. During its second flyby of the planet on October 6, 2008, the NASA probe MESSENGER discovered that Mercury ’s magnetic field shows a magnetic reconnection rate ten times higher than Earth's.
Thus, for a typical inductance (a coil of conducting wire), the flux linkage is equivalent to magnetic flux, which is the total magnetic field passing through the surface (i.e., normal to that surface) formed by a closed conducting loop coil and is determined by the number of turns in the coil and the magnetic field, i.e.,