Search results
Results From The WOW.Com Content Network
Following Lisp, other high-level programming languages which feature linked lists as primitive data structures have adopted an append. To append lists, as an operator, Haskell uses ++, OCaml uses @. Other languages use the + or ++ symbols to nondestructively concatenate a string, list, or array.
Another 3rd-party library, uthash, also creates associative arrays from C structures. A structure represents a value, and one of the structure fields serves as the key. [2] Finally, the GLib library also supports associative arrays, along with many other advanced data types and is the recommended implementation of the GNU Project. [3]
In computer science, a Judy array is a data structure implementing a type of associative array with high performance and low memory usage. [1] Unlike most other key-value stores, Judy arrays use no hashing, leverage compression on their keys (which may be integers or strings), and can efficiently represent sparse data; that is, they may have large ranges of unassigned indices without greatly ...
Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent).
The most frequently used general-purpose implementation of an associative array is with a hash table: an array combined with a hash function that separates each key into a separate "bucket" of the array. The basic idea behind a hash table is that accessing an element of an array via its index is a simple, constant-time operation.
In contrast to Python's built-in list data structure, these arrays are homogeneously typed: all elements of a single array must be of the same type. Such arrays can also be views into memory buffers allocated by C / C++ , Python , and Fortran extensions to the CPython interpreter without the need to copy data around, giving a degree of ...
Arrays are useful mostly because the element indices can be computed at run time. Among other things, this feature allows a single iterative statement to process arbitrarily many elements of an array. For that reason, the elements of an array data structure are required to have the same size and should use the same data representation.
BSON (/ ˈ b iː s ə n / [2]) is a computer data interchange format. The name "BSON" is based on the term JSON and stands for "Binary JSON". [2] It is a binary form for representing simple or complex data structures including associative arrays (also known as name-value pairs), integer indexed arrays, and a suite of fundamental scalar types.