Search results
Results From The WOW.Com Content Network
Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.
where is the volume of the pure solvent before adding the solute and ~ its molar volume (at the same temperature and pressure as the solution), is the number of moles of solvent, ~ is the apparent molar volume of the solute, and is the number of moles of the solute in the solution. By dividing this ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
At any given temperature (or pressure) where both phases are present, vapor with a certain mole fraction is in equilibrium with liquid with a certain mole fraction. The two mole fractions often differ. These vapor and liquid mole fractions are represented by two points on the same horizontal isotherm (constant T ) line. When an entire range of ...
The osmotic pressure of a solution is the difference in pressure between the solution and the pure liquid solvent when the two are in equilibrium across a semipermeable membrane, which allows the passage of solvent molecules but not of solute particles.
For a pure substance or a solvent in a condensed state (a liquid or a solid) the standard state is the pure liquid or solid under a pressure of 1 bar. For elements that have multiple allotropes, the reference state usually is chosen to be the form in which the element is most stable under 1 bar of pressure.
When one mole of water is added to a large volume of water at 25 °C, the volume increases by 18 cm 3. The molar volume of pure water would thus be reported as 18 cm 3 mol −1. However, addition of one mole of water to a large volume of pure ethanol results in an increase in volume of only 14 cm 3. The reason that the increase is different is ...
An ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. [1] The enthalpy of mixing is zero [ 2 ] as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes.