Search results
Results From The WOW.Com Content Network
Data normalization (or feature scaling) includes methods that rescale input data so that the features have the same range, mean, variance, or other statistical properties. For instance, a popular choice of feature scaling method is min-max normalization , where each feature is transformed to have the same range (typically [ 0 , 1 ...
Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines, logistic regression, and artificial neural networks).
Database normalization is the process of structuring a relational database accordance with a series of so-called normal forms in order to reduce data redundancy and improve data integrity. It was first proposed by British computer scientist Edgar F. Codd as part of his relational model .
Data normalization, general reduction of data to canonical form; Normal number, a floating point number that has exactly one bit or digit to the left of the radix point; Database normalization, used in database theory; Dimensional normalization, or snowflaking, removal of redundant attributes in a dimensional model
This was the first time the notion of a relational database was published. All work after this, including the Boyce–Codd normal form method was based on this relational model. The Boyce–Codd normal form was first described by Ian Heath in 1971, and has also been called Heath normal form by Chris Date .
Normalization splits up data to avoid redundancy (duplication) by moving commonly repeating groups of data into new tables. Normalization therefore tends to increase the number of tables that need to be joined in order to perform a given query, but reduces the space required to hold the data and the number of places where it needs to be updated if the data changes.
In the simplest cases, normalization of ratings means adjusting values measured on different scales to a notionally common scale, often prior to averaging. In more complicated cases, normalization may refer to more sophisticated adjustments where the intention is to bring the entire probability distributions of adjusted values into alignment.
The purpose of this normalization is to increase flexibility and data independence, and to simplify the data language. It also opens the door to further normalization, which eliminates redundancy and anomalies. Most relational database management systems do not support nested records, so tables are in first normal form by default.