When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    This core convection occurs in stars where the CNO cycle contributes more than 20% of the total energy. As the star ages and the core temperature increases, the region occupied by the convection zone slowly shrinks from 20% of the mass down to the inner 8% of the mass. [25] The Sun produces on the order of 1% of its energy from the CNO cycle.

  3. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    The first direct proof that nucleosynthesis occurs in stars was the astronomical observation that interstellar gas has become enriched with heavy elements as time passed. As a result, stars that were born from it late in the galaxy, formed with much higher initial heavy element abundances than those that had formed earlier.

  4. Kelvin–Helmholtz mechanism - Wikipedia

    en.wikipedia.org/wiki/Kelvin–Helmholtz_mechanism

    The mechanism was originally proposed by Kelvin and Helmholtz in the late nineteenth century to explain the source of energy of the Sun. By the mid-nineteenth century, conservation of energy had been accepted, and one consequence of this law of physics is that the Sun must have some energy source to continue to shine. Because nuclear reactions ...

  5. Supernova nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Supernova_nucleosynthesis

    Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...

  6. Nuclear fusion - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fusion

    Fusion powers stars and produces virtually all elements in a process called nucleosynthesis. The Sun is a main-sequence star, and, as such, generates its energy by nuclear fusion of hydrogen nuclei into helium. In its core, the Sun fuses 620 million metric tons of hydrogen and makes 616 million metric tons of helium each second.

  7. Nuclear astrophysics - Wikipedia

    en.wikipedia.org/wiki/Nuclear_astrophysics

    The current consensus on the origins of elements and isotopes are that only hydrogen and helium (and traces of lithium) can be formed in a homogeneous Big Bang (see Big Bang nucleosynthesis), while all other elements and their isotopes are formed in cosmic objects that formed later, such as in stars and their explosions. [11] The Sun's primary ...

  8. Triple-alpha process - Wikipedia

    en.wikipedia.org/wiki/Triple-alpha_process

    Comparison of the energy output (ε) of proton–proton (PP), CNO and Triple-α fusion processes at different temperatures (T). The dashed line shows the combined energy generation of the PP and CNO processes within a star. Helium accumulates in the cores of stars as a result of the proton–proton chain reaction and the carbon–nitrogen ...

  9. Mass–luminosity relation - Wikipedia

    en.wikipedia.org/wiki/Mass–luminosity_relation

    The luminosity is equal to the total energy produced by the star per unit time. Since this energy is produced by nucleosynthesis, usually in the star core (this is not true for red giants), the core temperature is related to the luminosity by the nucleosynthesis rate per unit volume: = (()) Here, ε is the total energy emitted in the chain ...