Search results
Results From The WOW.Com Content Network
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Dataset of legal contracts with rich expert annotations ~13,000 labels CSV and PDF Natural language processing, QnA 2021 The Atticus Project: Vietnamese Image Captioning Dataset (UIT-ViIC) Vietnamese Image Captioning Dataset 19,250 captions for 3,850 images CSV and PDF Natural language processing, Computer vision 2020 [112] Lam et al.
Previously, NIST released two datasets: Special Database 1 (NIST Test Data I, or SD-1); and Special Database 3 (or SD-2). They were released on two CD-ROMs. They were released on two CD-ROMs. SD-1 was the test set, and it contained digits written by high school students, 58,646 images written by 500 different writers.
The Pile is an 886.03 GB diverse, open-source dataset of English text created as a training dataset for large language models (LLMs). It was constructed by EleutherAI in 2020 and publicly released on December 31 of that year. [1] [2] It is composed of 22 smaller datasets, including 14 new ones. [1]
Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.
Various plots of the multivariate data set Iris flower data set introduced by Ronald Fisher (1936). [1]A data set (or dataset) is a collection of data.In the case of tabular data, a data set corresponds to one or more database tables, where every column of a table represents a particular variable, and each row corresponds to a given record of the data set in question.
The torch.class(classname, parentclass) function can be used to create object factories . When the constructor is called, torch initializes and sets a Lua table with the user-defined metatable, which makes the table an object.
Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis. [1] [2] [3] Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data.