Search results
Results From The WOW.Com Content Network
store a double into an array dcmpg 98 1001 1000 value1, value2 → result compare two doubles, 1 on NaN dcmpl 97 1001 0111 value1, value2 → result compare two doubles, -1 on NaN dconst_0 0e 0000 1110 → 0.0 push the constant 0.0 (a double) onto the stack dconst_1 0f 0000 1111 → 1.0 push the constant 1.0 (a double) onto the stack ddiv 6f
In some programming languages, such as C, arrays have a fixed lower bound (zero) and will contain data at each position up to the upper bound (so an array with 5 elements will have a range of 0 to 4). In others, such as PHP, an array may have holes where no element is defined, and therefore an array with a range of 0 to 4 will have up to 5 ...
On some PowerPC systems, [11] long double is implemented as a double-double arithmetic, where a long double value is regarded as the exact sum of two double-precision values, giving at least a 106-bit precision; with such a format, the long double type does not conform to the IEEE floating-point standard.
In C and C++ arrays do not support the size function, so programmers often have to declare separate variable to hold the size, and pass it to procedures as a separate parameter. Elements of a newly created array may have undefined values (as in C), or may be defined to have a specific "default" value such as 0 or a null pointer (as in Java).
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
The designers chose to address this problem with a four-step solution: 1) Introducing a compiler switch that indicates if Java 1.4 or later should be used, 2) Only marking assert as a keyword when compiling as Java 1.4 and later, 3) Defaulting to 1.3 to avoid rendering prior (non 1.4 aware code) invalid and 4) Issue warnings, if the keyword is ...
Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.
For example: int a[2][3]; This means that array a has 2 rows and 3 columns, and the array is of integer type. Here we can store 6 elements they will be stored linearly but starting from first row linear then continuing with second row. The above array will be stored as a 11, a 12, a 13, a 21, a 22, a 23.