Search results
Results From The WOW.Com Content Network
The force in the spring is (roughly) the vertical force at the contact patch divided by the motion ratio, and the spring rate is the wheel rate divided by the motion ratio squared. I R = S p r i n g D i s p l a c e m e n t W h e e l D i s p l a c e m e n t . {\displaystyle IR={\frac {SpringDisplacement}{WheelDisplacement}}.}
The combined center of mass of a typical upright bicycle and rider will be about 60 cm (24 in) back from the front wheel contact patch and 120 cm (47 in) above, allowing a maximum deceleration of 0.5 g (5 m/s 2 or 16 ft/s 2). [28] If the rider modulates the brakes properly, however, pitching can be avoided.
It featured up to 125 mm (5 inches) of travel on a bicycle weighing around 10.5 kg (23 pounds). For 10 years AMP Research manufactured their full-suspension bikes in small quantities in Laguna Beach, California , including the manufacture of their own hubs, rear shocks, front suspension forks and cable-actuated-hydraulic disc brakes which they ...
Pre-load is used to adjust the initial position of the suspension with the weight of the motorcycle and rider acting on it. The difference between the fully extended length of the suspension and the length compressed by the weight of the motorcycle and rider is called "total sag" or "race sag".
E.g., a reduction of 10% of the total system weight (bicycle, rider, and luggage combined) will save nearly 10% power. A reduced mass is also directly felt when accelerating. For example, the Analytic Cycling calculator Archived 2022-01-15 at the Wayback Machine gives a time/distance advantage of 0.16 s/188 cm for a sprinter with 500 g lighter ...
A torsion spring's rate is in units of torque divided by angle, such as N·m/rad or ft·lbf/degree. The inverse of spring rate is compliance, that is: if a spring has a rate of 10 N/mm, it has a compliance of 0.1 mm/N. The stiffness (or rate) of springs in parallel is additive, as is the compliance of springs in series.
The effective mass of the spring in a spring-mass system when using a heavy spring (non-ideal) of uniform linear density is of the mass of the spring and is independent of the direction of the spring-mass system (i.e., horizontal, vertical, and oblique systems all have the same effective mass). This is because external acceleration does not ...
Therefore, the spring constant k, and each element of the tensor κ, is measured in newtons per meter (N/m), or kilograms per second squared (kg/s 2). For continuous media, each element of the stress tensor σ is a force divided by an area; it is therefore measured in units of pressure, namely pascals (Pa, or N/m 2 , or kg/(m·s 2 ).