Search results
Results From The WOW.Com Content Network
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.
A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...
A primality test is an algorithm for determining whether an input number is prime.Among other fields of mathematics, it is used for cryptography.Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not.
Next we need an algorithm to count the number of points on E. Applied to E, this algorithm (Koblitz and others suggest Schoof's algorithm) produces a number m which is the number of points on curve E over F N, provided N is prime. If the point-counting algorithm stops at an undefined expression this allows to determine a non-trivial factor of N.
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]
All Mersenne primes are of the form M p = 2 p − 1, where p is a prime number itself. The smallest Mersenne prime in this table is 2 1398269 − 1. The first column is the rank of the Mersenne prime in the (ordered) sequence of all Mersenne primes; [33] GIMPS has found all known Mersenne primes beginning with the 35th. #
Blum-Blum-Shub is a PRNG algorithm that is considered cryptographically secure. Its base is based on prime numbers. Park-Miller generator: 1988 S. K. Park and K. W. Miller [13] A specific implementation of a Lehmer generator, widely used because it is included in C++ as the function minstd_rand0 from C++11 onwards. [14] ACORN generator: 1989 ...