Search results
Results From The WOW.Com Content Network
the integral is called an indefinite integral, which represents a class of functions (the antiderivative) whose derivative is the integrand. [19] The fundamental theorem of calculus relates the evaluation of definite integrals to indefinite integrals. There are several extensions of the notation for integrals to encompass integration on ...
In calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function () to indicate that the indefinite integral of () (i.e., the set of all antiderivatives of ()), on a connected domain, is only defined up to an additive constant.
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
In other languages, the shape of the integral symbol differs slightly from the shape commonly seen in English-language textbooks. While the English integral symbol leans to the right, the German symbol (used throughout Central Europe ) is upright, and the Russian variant leans slightly to the left to occupy less horizontal space.
In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [2]
Integral calculus is the study of the definitions, properties, and applications of two related concepts, the indefinite integral and the definite integral. The process of finding the value of an integral is called integration. [46]: 508 The indefinite integral, also known as the antiderivative, is the inverse operation to the derivative.
The former expression is written as a definite integral and the latter is written as an indefinite integral. Applying the appropriate limits to the latter expression should yield the former, but the latter is not necessarily equivalent to the former. Mathematician Brook Taylor discovered integration by parts, first publishing the idea in 1715.
In calculus, symbolic integration is the problem of finding a formula for the antiderivative, or indefinite integral, of a given function f(x), i.e. to find a formula for a differentiable function F(x) such that