When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    These models have the generality to distinguish the type of entity and relation, temporal information, path information, underlay structured information, [18] and resolve the limitations of distance-based and semantic-matching-based models in representing all the features of a knowledge graph. [1] The use of deep learning for knowledge graph ...

  3. Description logic - Wikipedia

    en.wikipedia.org/wiki/Description_logic

    Owlready2 is a package for ontology-oriented programming in Python. It can load OWL 2.0 ontologies as Python objects, modify them, save them, and perform reasoning via HermiT (included). Owlready2 allows a transparent access to OWL ontologies (contrary to usual Java-based API). OWLAPY. OWLAPY is an open-source Python framework for creating ...

  4. Vadalog - Wikipedia

    en.wikipedia.org/wiki/Vadalog

    A cyclical dependency graph. A rule is an expression of the form n :− a 1, ..., a n where: . a 1, ..., a n are the atoms of the body,; n is the atom of the head.; A rule allows to infer new knowledge starting from the variables that are in the body: when all the variables in the body of a rule are successfully assigned, the rule is activated and it results in the derivation of the head ...

  5. Knowledge graph - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph

    In knowledge representation and reasoning, a knowledge graph is a knowledge base that uses a graph-structured data model or topology to represent and operate on data. Knowledge graphs are often used to store interlinked descriptions of entities – objects, events, situations or abstract concepts – while also encoding the free-form semantics ...

  6. Neural scaling law - Wikipedia

    en.wikipedia.org/wiki/Neural_scaling_law

    Since there are 4 variables related by 2 equations, imposing 1 additional constraint and 1 additional optimization objective allows us to solve for all four variables. In particular, for any fixed C {\displaystyle C} , we can uniquely solve for all 4 variables that minimizes L {\displaystyle L} .

  7. Category:Knowledge graphs - Wikipedia

    en.wikipedia.org/wiki/Category:Knowledge_graphs

    A knowledge graph is a knowledge base that uses a graph-structured data model. Common applications are for gathering lightly-structured associations between topic-specific knowledge in a range of disciplines, which each have their own more detailed data shapes and schemas .

  8. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    GraphRAG with a knowledge graph combining access patterns for unstructured, structured, and mixed data GraphRAG [ 40 ] (coined by Microsoft Research ) is a technique that extends RAG with the use of a knowledge graph (usually, LLM-generated) to allow the model to connect disparate pieces of information, synthesize insights, and holistically ...

  9. Logic learning machine - Wikipedia

    en.wikipedia.org/wiki/Logic_learning_machine

    Like other machine learning methods, LLM uses data to build a model able to perform a good forecast about future behaviors. LLM starts from a table including a target variable (output) and some inputs and generates a set of rules that return the output value y {\displaystyle y} corresponding to a given configuration of inputs.