Search results
Results From The WOW.Com Content Network
While precision is a description of random errors (a measure of statistical variability), accuracy has two different definitions: More commonly, a description of systematic errors (a measure of statistical bias of a given measure of central tendency, such as the mean). In this definition of "accuracy", the concept is independent of "precision ...
In statistics and machine learning, the bias–variance tradeoff describes the relationship between a model's complexity, the accuracy of its predictions, and how well it can make predictions on previously unseen data that were not used to train the model. In general, as we increase the number of tunable parameters in a model, it becomes more ...
GPR is a Bayesian non-linear regression method. A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint Gaussian (normal) distribution. A GP is defined by a mean function and a covariance function, which specify the mean vectors and covariance matrices for each finite collection of the random variables.
Essentially, the MSe estimates the variability about the true (but unknown) mean of a distribution. This variability is composed of (1) the variability about the actual, observed mean, and (2) a term that accounts for how far that observed mean is from the true mean. Thus = +
Provided the data are strictly positive, a better measure of relative accuracy can be obtained based on the log of the accuracy ratio: log(F t / A t) This measure is easier to analyze statistically and has valuable symmetry and unbiasedness properties
Example of samples from two populations with the same mean but different dispersion. The blue population is much more dispersed than the red population. In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1]
The sample mean, on the other hand, is an unbiased [5] estimator of the population mean μ. [ 3 ] Note that the usual definition of sample variance is S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ¯ ) 2 {\displaystyle S^{2}={\frac {1}{n-1}}\sum _{i=1}^{n}(X_{i}-{\overline {X}}\,)^{2}} , and this is an unbiased estimator of the population variance.
The coefficient of variation is useful because the standard deviation of data must always be understood in the context of the mean of the data. In contrast, the actual value of the CV is independent of the unit in which the measurement has been taken, so it is a dimensionless number .