Search results
Results From The WOW.Com Content Network
Afterload is the mean tension produced by a chamber of the heart in order to contract. It can also be considered as the ‘load’ that the heart must eject blood against. Afterload is, therefore, a consequence of aortic large vessel compliance, wave reflection, and small vessel resistance (LV afterload) or similar pulmonary artery parameters (RV afterload
Preload is related to the ventricular end-diastolic volume; a higher end-diastolic volume implies a higher preload. However, the relationship is not simple because of the restriction of the term preload to single myocytes. Preload can still be approximated by the inexpensive echocardiographic measurement end-diastolic volume or EDV.
A Wiggers diagram modified from [1]. A Wiggers diagram, named after its developer, Carl Wiggers, is a unique diagram that has been used in teaching cardiac physiology for more than a century.
Many of the factors that regulate the heart rate also affect cardiac function by altering the stroke volume. While a number of variables are involved, stroke volume is dependent upon the difference between end diastolic volume and end systolic volume. The three primary factors involved are preload, afterload and contractility. [1]
Afterload is a determinant of cardiac output. [1] Cardiac output is the product of stroke volume and heart rate. [2] Afterload is a determinant of stroke volume (in addition to preload, and strength of myocardial contraction). [1]
Because greater EDVs cause greater distention of the ventricle, EDV is often used synonymously with preload, which refers to the length of the sarcomeres in cardiac muscle prior to contraction . An increase in EDV increases the preload on the heart and, through the Frank-Starling mechanism of the heart, increases the amount of blood ejected ...
Major factors influencing cardiac output – heart rate and stroke volume, both of which are variable. [1]In cardiac physiology, cardiac output (CO), also known as heart output and often denoted by the symbols , ˙, or ˙, [2] is the volumetric flow rate of the heart's pumping output: that is, the volume of blood being pumped by a single ventricle of the heart, per unit time (usually measured ...
An increase in preload results in an increased force of contraction by Starling's law of the heart; this does not require a change in contractility. An increase in afterload will increase contractility (through the Anrep effect). [4] An increase in heart rate will increase contractility (through the Bowditch effect). [4]