Search results
Results From The WOW.Com Content Network
The mafic rocks also typically have a higher density than felsic rocks. The term roughly corresponds to the older basic rock class. [9] Mafic lava, before cooling, has a low viscosity, in comparison with felsic lava, due to the lower silica content in mafic magma. Water and other volatiles can more easily and gradually escape from mafic lava.
The chemistry of the secondary minerals is controlled in part by the chemistry of the parent rock. Mafic rocks tends to contain higher proportions of magnesium and ferric and ferrous iron, which can lead to secondary minerals high in abundance of these cations, [6] including serpentine, Al-, Mg- and Ca-rich clays, [7] and iron oxides such as ...
Silicic magmas typically form blocky lava flows [14] or steep-sided mounds, called lava domes, because their high viscosity [15] does not allow it to flow like that of basaltic magmas. When felsic domes form, they are emplaced within and on top of the conduit. [ 16 ]
Peridotite, a type of ultramafic rock. Ultramafic rocks (also referred to as ultrabasic rocks, although the terms are not wholly equivalent) are igneous and meta-igneous rocks with a very low silica content (less than 45%), generally >18% MgO, high FeO, low potassium, and are usually composed of greater than 90% mafic minerals (dark colored, high magnesium and iron content).
Composite or stratovolcanoes often have andesitic magma and typically form the extrusive rock andesite. Andesitic magma is composed of many gases and melted mantle rocks. [2] Cinder or scoria cones violently expel lava with high gas content, [2] and due to the vapor bubbles in this mafic lava, the extrusive basalt scoria is formed. [6]
This is generally considered to be caused by the viscosity of the magma, which is orders of magnitude higher than mafic magmas. The higher viscosity means that, when melted, a granitic magma will tend to move in a larger concerted mass and be emplaced as a larger mass because it is less fluid and able to move.
Lower temperature mantle melts such as basalt and picrite have essentially replaced komatiites as an eruptive lava on the Earth's surface. Geographically, komatiites are predominantly restricted in distribution to the Archaean shield areas, and occur with other ultramafic and high-magnesian mafic volcanic rocks in Archaean greenstone belts.
In 1992, Coffin and Eldholm initially defined the term "large igneous province" as representing a variety of mafic igneous provinces with areal extent greater than 100,000 km 2 that represented "massive crustal emplacements of predominantly mafic (magnesium- and iron-rich) extrusive and intrusive rock, and originated via processes other than 'normal' seafloor spreading."